Category Archives: Tutorials

Google Adsense for Wordpres – No Plugin Needed

Adding Google Adsense ads to your your WordPress blog was a tedious task. Either you needed to manually modify your theme, or you had to use a plugin, such as Google’s own Adsense plugin. Even then, placements were limited and handling both mobile and desktop themes was complicated at best. Recently, two things have changed: Google retired the Adsense plugin and introduced Auto Ads.

At first, the situation seemed like it turned for the worse. Without the official plugin, you had to resort into using a third-party plugin or manually placing ads in your theme. But Auto ads made things much simpler. Instead of having to manually place your ads, you can let Google do it for you. It works great on both desktop and mobile theme.

The easiest way to enable Auto ads is using a child theme. First, you need to get the Auto ads ad code. Nextg, in your child theme’s functions.php add the following lines, making sure to replace the javascript snippet with your own one.

// Add Google Adsense
function my_google_adsense_header() {
<script async src="//"></script>
     (adsbygoogle = window.adsbygoogle || []).push({
          google_ad_client: "ca-pub-4066984350135216",
          enable_page_level_ads: true
add_action( 'wp_head', 'my_google_adsense_header');

Google Analytics for WordPress

To set up Google Analytics tracking for WordPress you don’t need any third-party plugin. It can be easily done using a child theme. A child theme, is a code that modifies the current theme in a way that won’t interfere with future upgrades. To enable Google Analytics, start by creating a child theme using the official documentation.

Now, you need to get you Google Analytics tracking code. Over the years the tracking code had a few different versions. You should make sure you are getting the latest tracking code, which currently looks like:

<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src=""></script>
  window.dataLayer = window.dataLayer || [];
  function gtag(){dataLayer.push(arguments);}
  gtag('js', new Date());

  gtag('config', 'UA-380837-9');

To get the tracking code, follow the instructions on this page.

Now we add the tracking code to each page using the child theme. In your child theme’s directory, edit the functions.php file and add the following lines. Replace the tracking code with the one you acquired.

// Add Google Analytics tracking
function my_google_analytics_header() {
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src=""></script>
  window.dataLayer = window.dataLayer || [];
  function gtag(){dataLayer.push(arguments);}
  gtag('js', new Date());

  gtag('config', 'UA-380837-9');
add_action( 'wp_head', 'my_google_analytics_header');

This adds the tracking code to the <head> of every page.

Creating Local Backups using `rdiff-backup`

rdiff-backup provides an easy way to maintain reverse-incremental backups of your data. Reverse incremental backups are different from normal incremental backups by synthetically updating the full backup and keeping reverse diffs of all the files changed. It is best illustrated by an example. Let’s consider backups taken on three consecutive days:
1. Full backup (1st day).
2. Full backup (2nd day), reverse-diff: 2nd -> 1st.
3. Full backup (3rd day), reverse diffs: 3rd -> 2nd, 2nd -> 1st.

Compare that with the regular incremental backup model which would be:
1. Full backup (1st day).
2. Diff: 2nd -> 1st, full backup (1st day).
3. Diffs: 3rd -> 2nd, 2nd -> 1st, full backup (1st day).

This especially makes purging old backups easier. Reverse incremental backups allows you to simply purge the reverse-diffs as they expire. This happens because newer backups never depend on older ones. In contrast, in the regular incremental model, each incremental backup depends on each prior backup in the chain, going back to the full backups. Thus, you can’t remove the full backup until all the incremental backups that depend on it expire as well. This means that most of the time you need to keep more than one full backups, which takes up precious disk space.

rdiff-backup has some disadvantages as well:
1. Backups are not encrypted, making it unsuitable as-is for remote backups.
2. Only the reverse-diffs are compressed.

The advantages of rdiff-bakcup make it suitable to create local Time Machine-like backups.

The following script, set via cron to run daily, can be used to take backups of your home directory:

#! /bin/sh


## Backup
rdiff-backup --exclude-if-present .nobackup --exclude-globbing-filelist /home/user/backups/home-exclude --print-statistics $SOURCE $TARGET

## Remove old data
rdiff-backup --remove-older-than 1M --force --print-statistics $TARGET

where `/home/user/backups/home-exclude should look like:

+ /home/user/Desktop
+ /home/user/Documents
+ /home/user/Music
+ /home/user/Pictures
+ /home/user/Videos
+ /home/user/.vim
+ /home/user/.vimrc
+ /home/user/.ssh
+ /home/user/.gnupg


In order to select only certain files and directories to backup.

The --exclude-if-present .nobackup allows you to easily add a .nobackup file to directories you wish to ignore. The --force argument when purging the old backups allows it to remove more than one expired backup in a single run.

Listing backup chains:

$ rdiff-backup -l ~/backups/rdiff-home/

Restoring files from the most recent backup is simple. Because rdiff-backup keeps the latest backup as a normal mirror on the disk, you can simply copy the file you need out of the backup directory. To restore older files:

$ rdiff-backup --restore-as-of 10D ~/backups/rdiff-home/.vimrc restored_vimrc

Installing Firefox Quantum on Debian Stretch

Debian only provides the ESR (Extended Support Release) line of Firefox. As a result, currently, the latest version of Firefox available for Debian Stretch is Firefox 52, which is pretty old. Lately, Firefox 57, also known as Quantum, was released as Beta. It provides many improvements over older Firefox releases, including both security and performance.

Begin by downloading the latest beta (for Firefox 57) and extract it to your home directory:

$ wget -O firefox-beta.tar.bz2 ""
$ tar -C ~/.local/ -xvf firefox-beta.tar.bz2

This installs Firefox to your current user. Because Firefox is installed in a user-specific location (and without root-priveleges), Firefox will also auto-update when new versions are released.

If you prefer using the stable version of firefox, simply replace the first step by

$ wget -O firefox-stable.tar.bz2 ""

Next, we take care of desktop integration. Put the following in ~/.local/share/applications/firefox-beta.desktop:

[Desktop Entry]
Name=Firefox Beta
Exec=/home/guyru/.local/firefox/firefox %u

Patching an Existing Debian Package

This tutorial walks you through patching an existing Debian package. It is useful if you want to create a .deb of a package after fixing some bug or modifying the source in any other way. We will hugin as our example.

We start by fetching the source package

$ apt-get source hugin
$ cd hugin-2017.0.0+dfsg

We will need a tool named quilt to make the process easier.

# apt install quilt

Before using quilt we want to make it aware of the debian/patches directory which holds the patches. Adding the following lines to ~/.quiltrc will make quilt search up the directory tree the debian/patches directory.

d=. ; while [ ! -d $d/debian -a `readlink -e $d` != / ]; do d=$d/..; done
if [ -d $d/debian ] && [ -z $QUILT_PATCHES ]; then
        # if in Debian packaging tree with unset $QUILT_PATCHES
        QUILT_DIFF_ARGS="-p ab --no-timestamps --no-index --color=auto"
        QUILT_REFRESH_ARGS="-p ab --no-timestamps --no-index"
        if ! [ -d $d/debian/patches ]; then mkdir $d/debian/patches; fi

Now starts the actual patching process. The patches are applies in series, and our new patch should be the last one. We start by applying any existing patches, and then creating a new patch

$ quilt push -a
$ quilt new 44_setlocale.patch

I chose the 44_ prefix because hugin already has a patch named 43_fallbackhelp.patch and the convention is naming patches so the names reflect the order they are applied. Next we specify to quilt which files we modify and then we edit them.

$ quilt add src/hugin1/hugin/huginApp.cpp
$ vim src/hugin1/hugin/huginApp.cpp

Alternatively, instead of editing the files manually, quilt import can be used to import an existing patch.

Each patch comes with its own metadata to let other people know who wrote it and what it does. Use

$ quilt header --dep3 -e

to edit this metadata. For example:

Description: Call setlocale()
This fixes a bug in wxExecute, see
The patch has been submitted to upstream,
Author: Guy Rutenberg <>
Last-Update: 2017-10-04
This patch header follows DEP-3:
See [DEP-3]( for more details about the different fields.

After we finish editing we finalize the patch, and unapply all the patches

$ quilt refresh
$ quilt pop -a

Now, you can continue to build the deb from source as usual. We use debchange to create a new version, and debuild to build the package. After the package is build it can be installed using debi

$ DEBEMAIL="Guy Rutenberg <>" debchange --nmu
$ debuild -us -uc -i -I -j7


Use `mk-build-deps` instead of `apt-get build-dep`

If you are building a package from source on Debian or Ubuntu, usually the first step is to install the build-dependencies of the package. This is usually done with one of two commands:

$ sudo apt-get build-dep PKGNAME


$ sudo aptitude build-dep PKGNAME

The problem is that there is no easy way to undo or revert the installation of the build dependencies. All the installed packages are marked as manually installed, so later one cannot simply expect to “autoremove” those packages. Webupd8 suggests clever one-liner that tries to parse the build dependencies out of apt-cache and mark them as automatically installed. However, as mentioned in the comments, it may be too liberal in marking packages as automatically installed, and hence remove too many packages.

The real solution is mk-build-deps. First you have to install it:

$ sudo apt install devscripts

Now, instead of using apt-get or aptitude directly to install the build-dependencies, use mk-build-deps.

$ mk-build-deps PKGNAME --install --root-cmd sudo --remove

mk-build-deps will create a new package, called PKGNAME-build-deps, which depends on all the build-dependencies of PKGNAME and then install it, therefore pulling all the build-dependencies and installing them as well. As those packages are now installed as dependencies they are marked as automatically installed. Once, you no longer need the build-dependencies, you can remove the package PKGNAME-build-deps, and apt will autoremove all the build-dependencies which are no longer necessary.

Let’s Encrypt: Reload Nginx after Renewing Certificates

Today I had an incident which caused my webserver to serve expired certificates. My blog relies on Let’s Encrypt for SSL/TLS certificates, which have to be renewed every 3 months. Usually, the cronjob which runs certbot --renew takes care of it automatically. However, there is one step missing, the server must reload the renewed certificates. Most of the time, the server gets reloaded often enough so everything is okay, but today, its been a quite a while since the last time since the nginx server was restarted, so expired certificates were served and the blog became unavailable.

To workaround it, we can make sure nginx reloads it configuration after each successful certificate renewal. The automatic renewal is defined in /etc/cron.d/certbot. The default contents under Debian Jessie are as follows:

# /etc/cron.d/certbot: crontab entries for the certbot package
# Upstream recommends attempting renewal twice a day
# Eventually, this will be an opportunity to validate certificates
# haven't been revoked, etc.  Renewal will only occur if expiration
# is within 30 days.

0 */12 * * * root test -x /usr/bin/certbot && perl -e 'sleep int(rand(3600))' && certbot -q renew

The last line makes sure certificate renewal runs twice a day. Append --renew-hook "/etc/init.d/nginx reload" to it, so it looks like this:

0 */12 * * * root test -x /usr/bin/certbot && perl -e 'sleep int(rand(3600))' && certbot -q renew --renew-hook "/etc/init.d/nginx reload"

The --renew-hook runs the next argument after each successful certificate renewal. In our case we use it to reload the nginx configuration, which also reloads the newly renewed certificates.

Installing OrderNet Pro on Debian Jessie

OrderNet is a a popular stock trading platform in Israel. OrderNet comes in two versions: The regular version is based on Silverlight and can be used on Linux using Pipelight. The Pro version is a desktop program written in .NET Framework and features better interface. This post walks through the steps needed to get OrderNet Pro running on Debian Jessie using Wine.

Continue reading

Creating a personal apt repository using `dpkg-scanpackages`

From time to time I build and backport deb packages. Most of them are for my personal use, but sharing them would be nice. Another advantage for setting up a personal repository over directly installing deb files is that you can install dependencies from that repository automatically. Especially useful if one source package builds multiple binary packages which depend on one another.

There is a list of programs ways how to setup such personal repository in the Debian wiki. However, I found most ways to be too cumbersome for my limited requirements. The way I’m describing below is probably the simplest and easiest way to get up and running.

First thing is installing dpkg-dev which provides dpkg-scanpackages.

sudo apt install dpkg-dev

Next put the deb files you created in some local repository such as /usr/local/debian and cd into it.

# dpkg-scanpackages -m . | gzip -c > Packages.gz

will scan all the *.deb files in the directory and create an appropriate Packages.gz file. You need to repeat this step whenever you add new packages to /usr/local/debian.

Finally to enable the new local repository, add the following line to /etc/apt/sources.list:

deb [trusted=yes] file:///usr/local/debian ./

The [trusted=yes] options instruct apt to treat the packages as authenticated. Alternatively, if you want to share it with others, make sure that your webserver serves the directory and point to it

deb ./

(You will need the apt-transport-https in order to use https repositories).

Don’t forget to apt update before trying to install packages from the new repository.

Getting Started with Let’s Encrypt – Tutorial

A few days ago I got my invitation to Let’s Encrypt Beta Program. For those of you who are not familiar with Let’s encrypt:

Let’s Encrypt is a new free certificate authority, built on a foundation of cooperation and openness, that lets everyone be up and running with basic server certificates for their domains through a simple one-click process.

This short tutorial is intended to get you up and running with your own Let’s Encrypt signed certificates.

The first thing is to get the Let’s Encrypt client:

git clone
cd letsencrypt

The main command we will be working with is ./letsencrypt-auto. The first time you will run it, it will also ask for sudo, install various dependencies using your package manager and setup a virtualenv environment.

The next step is to issue the certificate and prove to Let’s Encrypt that you have some control over the domain. The client supports two methods to perform the validation. The first one is the standalone server. It works by setting up a webserver on port 443, and responding to a challenge from the Let’s Encrypt servers. However, if you already have your own web-server running on port 443 (the default for TLS/SSL), you would have to temporarily shut it down. To use the standalone method run:

./letsencrypt-auto --agree-dev-preview --server certonly

The second method is called Webroot authentication. It works by placing a folder (.well-known/acme-challenge) in the document root of your server with files corresponding to responses for challenges.

./letsencrypt-auto --agree-dev-preview --server -a webroot --webroot-path /var/www/html/ certonly

Whatever method you chose, it will ask for a list of domains you want to validate and your email address. You can write multiple domains. The first one will be the Common Name (CN) and the rest will appear in the Subject Alt Name field.

This slideshow requires JavaScript.

The newly generated certificates will be placed in


The important files in this directory are fullchain.pem which contain the full certificate chain to be served to the browser and privkey.pem which is the private key.

An example Nginx configuration will now look like:

        listen 443 ssl;
        ssl_certificate /etc/letsencrypt/live/;
        ssl_certificate_key /etc/letsencrypt/live/;

Just don’t forget to reload the web-server so configuration changes take effect. No more government snooping on my blog 😉 .